Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DFIB(s(s(x)), y) → DFIB(s(x), dfib(x, y))
DFIB(s(s(x)), y) → DFIB(x, y)

The TRS R consists of the following rules:

dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

DFIB(s(s(x)), y) → DFIB(s(x), dfib(x, y))
DFIB(s(s(x)), y) → DFIB(x, y)

The TRS R consists of the following rules:

dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


DFIB(s(s(x)), y) → DFIB(s(x), dfib(x, y))
DFIB(s(s(x)), y) → DFIB(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(dfib(x1, x2)) = 1/4   
POL(s(x1)) = 1/4 + (2)x_1   
POL(DFIB(x1, x2)) = (1/4)x_1 + (1/4)x_2   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.